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Abstract. We present the details of a formalism for a self-consistent description of multiple
ruptures in an elastic medium and numerical techniques for studying quasistatic processes of
fractures. We apply this formalism and investigate a double-couple model of a seismic zone with
an embedded pre-existing fault. Results for both spatial and temporal features of earthquakes
and power laws in statistical distributions are presented.

1. Introduction

There has been considerable interest in studying fracture processes in heterogeneous solids
[1]. Discrete models based on a network of bonds or plaquettes have been typically used
to study fractures in heterogeneous materials where the existence of many microcracks and
inhomogeneities in local breakdown thresholds play a significant role. Such models are
important not only for elucidating the microscopic aspects of the strength of composite
or disordered materials, but are also crucial for understanding earthquakes, which involve
large-scale fractures caused by the slow relative motion of tectonic plates [2]. There are
different approaches to studying this problem, ranging from simple lattice models with
central forces (block spring) to those that include angular stiffness all the way to formal
finite element techniques. There is an extensive literature on this subject [1]. The study of
lattices near the percolation threshold has also generated considerable interest. A plaquette
model of elastic media in the presence of local ruptures has been constructed recently by
Xu et al [3]. They showed that the effects of local ruptures can be represented correctly by
a local double-couple force distribution; this representation allows efficient simulation of
the fracture process. The plaquette model also leads to a more direct connection with the
continuum description [4], as the stress and strain tensors are defined locally on individual
plaquettes.

In this paper we describe the details of a new numerical technique for studying fractures
in a large class of quasistatic models. In addition, we will also present an efficient method
for evaluating the lattice Green functions used in calculating the stress redistribution due
to local ruptures. The formalism is general and can also be used to study a variety of
other breakdown problems, such as random fuse network problems [6–8] and dielectric
breakdown problems [9]. The other method that can be fruitfully employed is the conjugate
gradient method [5]. We note that, however, our method is especially effective for the cases
in which the number of ruptures is small in comparison with the number of plaquettes.
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We illustrate the application of our numerical scheme by studying a double-couple model
of a seismic zone with an embedded pre-existing fault. We provide numerical evidence
that suggests that the power-law behaviour of the model remains the same as in our earlier
dipole model [10, 11]. On a more technical note, the original discretization scheme of [3]
exhibits some non-physical features, as will be explained in detail later, such as the problem
of sublattice decoupling and an ambiguity in the direction of fractures at the level of a unit
plaquette. This paper presents a refined discretization scheme that avoids these problems
that is of interest in the general context of discretizing continuum elastic problems.

The rest of the paper is organized as follows. In section 2 we describe our refined
discretization scheme and review the general self-consistent procedure for calculating the
stress redistribution due to multiple ruptures using lattice Green functions [10]. In section 3
we present new numerical techniques for simulating the quasistatic process of fractures.
Section 4 begins with a brief summary of earlier studies of earthquake models and then
details the application of our numerical scheme to a double-couple model of the seismic
zone with an embedded pre-existing fault. This double-couple model in which both the
force- and torque-balance conditions following a rupture are incorporated (thus reflecting
the full tensorial nature of elasticity theory) generalizes the dipole version of the model
introduced earlier by us [11]. Numerical results on the spatial and temporal features of the
model will be presented. As in our previous studies, we consider two-dimensional systems
and include only fractures along the direction of the external shear for greater computational
feasibility. Some technical details are relegated to two appendices; an efficient method for
calculating Green functions is presented in appendix A and an iterative scheme for inverting
matrices is reviewed in appendix B.

2. Formalism and discretization scheme

In this section we will discuss our formalism for handling multiple ruptures in a
heterogeneous elastic medium. While these considerations apply equally well to modelling
the fracture of disordered, brittle materials under external stress we present the ideas in
the context of earthquakes. Consider an elastic region (the seismic zone) with possible
macroscopic inhomogeneities (for example, a pre-existing fault); the elastic medium is
assigned random thresholds for local fractures. External loading (tectonic forces) results
in the build-up of stress leading to a sequence of ruptures. The quasistatic version of the
general problem that must be solved consists of two parts.

The first part corresponds to static equilibrium within linear elasticity which is described
by the force-balance condition on the stress tensor,σij , that applies wherever there are no
ruptures:

∂σij

∂xi
= 0. (2.1)

Recall the definition of the (continuum) strain tensor

uij (r) = 1

2

(
∂uj (r)

∂xi
+ ∂ui(r)

∂xj

)
(2.2)

whereui(r) is theith component of the displacement vector atr. In the absence of ruptures,
when all deformations are elastic, the stress tensor is related to the strain tensor through the
generalized Hooke’s law:

σij (r) = Kull(r)δij + 2µ(uij (r)− 1
3δijull(r)) (2.3)
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whereK andµ are the bulk and shear moduli respectively and summation over repeated
indices is implied.

The second part involves dealing with local ruptures and their effect on the stress in the
medium. In order to handle this problem we discretize the system and consider a square
lattice. Let us consider the effect of a local rupture, say, a shear fracture in theêx direction
at a plaquetter0. We have tacitly assumed that the length scale of the rupture is set by the
lattice spacing determined by the discretization procedure, thereby adopting a macroscopic
description of the fracture process. After the break we must decide on an appropriate
boundary condition at the fracture (see the discussion in section 4); given the boundary
condition, for example, that the shear stress on the fractured surface is reduced to a fraction
of the original stress, there is a force imbalance resulting in a stress redistribution. The
calculation we must do is to find a self-consistent solution for the stresses in the presence
of multiple ruptures that satisfies the specified boundary conditions at the ruptures (and
fault segments) and the static, elastic, equilibrium conditions elsewhere. In this section we
discuss the technical aspects of the discretization scheme on a two-dimensional lattice, the
various problems associated with naive schemes and one way of overcoming these; we also
present a method for evaluating the necessary Green functions efficiently. We point out that
we have reduced the problem to a two-dimensional one by imposing a plane stress condition,
i.e. all the stresses act in thexy plane. In this case it is easy to verify that the bulk modulus,
K, in equation (2.3) is an effective modulus that is related to the three-dimensional moduli.

The discretization scheme in [3] for elastic systems is defined by introducing the
discretized derivatives,Di , along theith direction of a square lattice as follows; for any
function g(r) we define,

Dxg(r) ≡ 1
2[g(r + b)+ g(r + d)− g(r − b)− g(r − d)] (2.4)

and

Dyg(r) ≡ 1
2[g(r + b)+ g(r − d)− g(r + d)− g(r − b)] (2.5)

where we have definedd = (êx − êy)/2 andb = (êx + êy)/2 in terms of the unit vectors
êx and êy along the coordinate axes. We imagine that the displacement vectors{u(r)}
are defined at the centres of the squares or plaquettes; then the stress tensors{σij (r)} are
defined at the corners of the squares. Using this scheme, Xuet al [3] have shown that
the local ruptures can be represented along double couples with fictitious forces residing
at the corners of the fractured plaquettes. The effect of local ruptures on the stress and
displacement distributions of the system can be represented by Green functions. Letu′i (r)
denote the additional displacement induced by the rupture. The additional stress caused
by the ruptureσ ′ij can be divided into a partσ elij that is related tou′i via the generalized
Hooke’s law and a partσne at the ruptured sites where linear elasticity is violated. It is
straightforward to see that for one rupture atr0 we have

Djσ
el
xj (r)+ σneDy(δr,r) = 0 (2.6)

Djσ
el
yj (r)+ σneDx(δr,r) = 0. (2.7)

Given σne we can obtain a solution forσ el , which then can be used to obtainσne self
consistently by applying the boundary condition at the ruptured site.

In the case of multiple ruptures along thex direction at the locations{ri} with
i = 1, . . . , nr , the additional shear stress,σxy(r), and displacement,ux(r), can be written
as follows:

σ ′xy(r) = ασ
nr∑
i=1

[fi(ri )Gσ (r − ri )] (2.8)
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u′x(r) = αu
{ nr∑
i=1

fi(ri )[γGu1(r − ri )+Gu2(r − ri )]
}

(2.9)

where fi(ri ) denotesσne at ri , ασ = (K + µ/3)/(K + 4µ/3), αu = ασ/µ, and
γ = µ/(K + µ/3). The Green functions can be worked out following [3]:

Gσ(r) =
∫ π

−π

dkx
2π

∫ π

−π

dky
2π

sin2 kx sin2 ky

(1− coskx cosky)2
eik·r (2.10)

Gu1(r) = i
∫ π

−π

dkx
2π

∫ π

−π

dky
2π

sin ky
2 coskx2

1− coskx cosky
eik·r (2.11)

and

Gu2(r) = i
∫ π

−π

dkx
2π

∫ π

−π

dky
2π

(coskx − cosky) sin ky
2 coskx2

(1− coskx cosky)2
eik·r. (2.12)

It is worth noting that with the discretization defined in equations (2.4) and (2.5) the
Laplacian ink-space is given by 2(1−coskx cosky). In the following we find it convenient
to redefineασfi asfi and scale the displacementux , u′x by a factor ofµ; this removes the
factorsασ andαu in equations (2.8) and (2.9):

σ ′xy(r) =
nr∑
i=1

[fi(ri )Gσ (r − ri )] (2.13)

u′x(r) =
nr∑
i=1

fi(ri )[γGu1(r − ri )+Gu2(r − ri )]. (2.14)

A straightforward implementation of the quasistatic fracture process used in [3] is to
consider a sequence of ruptures at the locations where the stresses exceed the corresponding
thresholds. There are a few problems associated with this simple implementation: the
ruptures occur at the corners of plaquettes which is not physically appealing if these unit
plaquettes are interpreted as real physical blocks. In addition, there is a degeneracy problem
associated with the direction of ruptures: a given local rupture (generated whenσxy exceeds
the threshold), can be interpreted either as a rupture along thex or y direction. More
troublesome is the fact that the rupture at the positionr0 does not change the stress at the
positionsr0+mêx+nêy whenm+n is an odd integer; this problem of sublattice decoupling
is obviously an artefact of this discretization scheme. We need a better discretization scheme
to avoid the above problems. One way this can be achieved is by using a coarse-grained
lattice with a new unit cell consisting of four unit cells on the original lattice as illustrated
in figure 1. The coarse-grained displacement and stress fields will be discussed first. We
define a coarse-grained displacement (denoting this by a bar) at the centre of the new cell
as

ūi(r) = 1

4

[
ui

(
r − êx

2
− êy

2

)
+ ui

(
r − êx

2
+ êy

2

)
+ ui

(
r + êx

2
− êy

2

)
+ui

(
r + êx

2
+ êy

2

)]
(2.15)

the new stress is defined at the centre of the interface of the new cells with its value being
the average stress along the interface. For the shear stress,σxy , along the horizontal interface
we define

σ̄xy(r) = 1
4[σxy(r − êx)+ 2σxy(r)+ σxy(r + êx)]. (2.16)
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Figure 1. In the original lattice on the left the stress tensor(σ ) resides at the corners and the
displacement(u) at the centres of the plaquettes. The coarse-grained plaquette is shown on the
right with the original lattice shown by light lines and the new lattice by heavy lines.

We next rewrite equations (2.8) and (2.9) in terms of the coarse-grained variables. This
requires that we define a rupture in the new lattice in terms of the ruptures on the original
lattice: a rupture in the new lattice atr0 with the double-couple strength̄f corresponds
to ruptures in the original lattice atr0 − êx (with double-couple strength̄f /4), r0 (with
f̄ /2), andr0 + êx (with f̄ /4). Now the Green functions for the coarse-grained lattice can
be obtained as follows. Dropping the subscriptsxy andx in σxy andux for convenience,
the additional stress on the coarse-grained lattice due to the rupture is given by

σ̄ ′(r) = 1
4[σ ′(r − êx)+ 2σ ′(r)+ σ ′(r + êx)].

The additional stress on the original lattice can be obtained using equation (2.13):

σ ′(r) = f̄

4
[Gσ(r − r0− êx)+ 2Gσ(r − r0)+Gσ(r − r0+ êx)].

We thus have

σ̄ ′(r) = f̄ Ḡσ (r − r0) (2.17)

where

Ḡσ (r) = 1
16[Gσ(r − 2êx)+ 4Gσ(r − êx)+ 6Gσ(r)+ 4Gσ(r + êx)+Gσ(r + 2êx)].(2.18)

The additional displacement along thex direction in the new lattice is given by

ū′(r) = 1

4

[
u′
(
r − êx

2
− êy

2

)
+ u′

(
r − êx

2
+ êy

2

)
+ u′

(
r + êx

2
− êy

2

)
+u′

(
r + êx

2
+ êy

2

)]
(2.19)

where

u′(r) = f̄

4
[γ (Gu1(r − r0− êx)+ 2Gu1(r − r0)+Gu1(r − r0+ êx))
+(Gu2(r − r0− êx)+ 2Gu2(r − r0)+Gu2(r − r0+ êx))]. (2.20)

Substituting the above expression foru′(r) into equation (2.19) we obtain

ū′(r) = f̄ [γ Ḡu1(r − r0)+ Ḡu2(r − r0)] ≡ f̄ Gu(r − r0) (2.21)

where the coarse-grained Green functions can be written as

Ḡu1,2(r) = 1

2

[
G̃u1,2

(
r − êy

2

)
+ G̃u1,2

(
r + êy

2

)]
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with

G̃u1,2(r) = 1

8

[
Gu1,2

(
r − 3êx

2

)
+ 3Gu1,2

(
r − êx

2

)
+ 3Gu1,2

(
r + êx

2

)
+Gu1,2

(
r + 3êx

2

)]
.

In the numerical procedure for studying quasistatic processes of fractures, it is more
efficient to compute the Green functions and store them so that they can be used repeatedly
to calculate stress redistribution when new ruptures occur or when there is a change in the
boundary conditions. It is important to have an efficient method to accurately calculate the
Green functions numerically. Achieving the necessary precision by directly evaluating the
expressions, for example in equation (2.10) which involves performing a two-dimensional
integral for each positionr, is very time consuming. We have successfully reduced the two-
dimensional integrals to one-dimensional integrals, using the fact that the integrals need only
be done for points with integer or half-integer coordinates; this leads to an efficient method
for calculating Green functions. The method can also be used to calculate Green functions
involved in other breakdown problems. The calculation in appendix A leads to the following
result fory > 0

Gσ(x, y) =
∫ π

0

dkx
π
| sinkx | coskxx

[
z
y

1

1+ | sinkx | − η(y)
| sinkx |zy−2

1

(1+ | sinkx |)2
]

(2.22)

wherez1 = (1− | sinkx |)/ coskx, η(y) = y − 1 if y > 1 andη(y) = 0 wheny = 0, 1. For
the case thaty < 0 the Green function can be obtained using the symmetry relation

Gσ(±x,±y) = Gσ(x, y). (2.23)

We can use the same idea to evaluateGu1,2 (for x and y half-integers). For the case
y > 0 we have obtained

Gu1(x, y) = −
∫ π

0

dkx
π

coskxxz
y−1/2
1

2
(∣∣coskx2

∣∣+ ∣∣sin kx
2

∣∣) (2.24)

and

Gu2(x, y) = −
∫ π

0

dkx
π

coskx2 coskxx
[(
y + 1

2

)
z
y−1/2
1 − (y − 1

2

)
z
y−3/2
1

]
2(1+ | sinkx |) . (2.25)

For the case thaty < 0, the following symmetry relations

Gu1,2(±x,−y) = −Gu1,2(±x, y) (2.26)

can be used to evaluate the Green functions.
The Green function for the coarse-grained lattice can now be calculated in a

straightforward way using

Ḡσ (r) =
∫ π

0

dkx
π
| sinkx | cos4

kx

2
coskxx

[
z
y

1

1+ | sinkx | − η(y)
| sinkx |zy−2

1

(1+ | sinkx |)2
]

(2.27)

Ḡu1(r) = −1

4

∫ π

0

dkx
π

cos3 kx
2 coskxx(1+ z1)z

y−1
1∣∣coskx2

∣∣+ ∣∣sin kx
2

∣∣ (2.28)

and

Ḡu2(r) = −1

4

∫ π

0

dkx
π

cos4 kx
2 coskxx[(y + 1)zy1 − (y − 1)zy−2

1 ]

1+ | sinkx | . (2.29)
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Note that the lattice spacing of the coarse-grained lattice is two in units of the original
lattice. We rescale the length by half for convenience so that the coarse-grained lattice has
unit spacing. This can be done by replacing bothx andy by 2x and 2y respectively in the
coarse-grained Green functions. From now on we restrict our attention to the coarse-grained
lattice and therefore, we will drop the bars in̄Gσ,u1,u2 for notational simplicity. We rewrite
the results below: the Green function for the stress is given by

Gσ(r) =
∫ π

0

dkx
π
| sinkx | cos4

kx

2
cos 2kxx

[
z

2y
1

1+ | sinkx | − η(2y)
| sinkx |z2y−2

1

(1+ | sinkx |)2
]

(2.30)

where bothx and y > 0 are integers;Gσ for y < 0 can be obtained by the symmetry
relation, that is the same as the one for the Green function of the original lattice (see
equation (2.23)). The Green function for the displacement are given by

Gu1(r) = −1

4

∫ π

0

dkx
π

cos3 kx
2 cos 2kxx(1+ z1)z

2y−1
1∣∣coskx2

∣∣+ ∣∣sin kx
2

∣∣ (2.31)

and

Gu2(r) = −1

4

∫ π

0

dkx
π

cos4 kx
2 cos 2kxx[(2y + 1)z2y

1 − (2y − 1)z2y−2
1 ]

1+ | sinkx | (2.32)

wherex is an integer andy is a half-integer;Gu1,2 for y < 0 can again be obtained by the
symmetry relations. We will use these Green functions in our simulations.

The self-consistent numerical procedures are based on equations (2.13) and (2.14), where
the boundary conditions (external boundary conditions or internal boundary conditions at the
ruptured sites) give rise to self-consistency conditions for the double-couple strengths. The
boundary conditions at the ruptures can either be expressed in terms of the local stress (e.g.
the stress at the ruptured surface is reduced to zero), or local displacement (when the ruptured
surface is stuck the displacements on the two sides are equal), or both. The self-consistency
equations can then be solved for the double-couple strengths, which in turn are used to obtain
the stress and displacement distribution in the system. The key step in the simulation is the
self-consistent determination of the double-couple strengths, given the external boundary
conditions and internal fracture conditions, which are constantly changing as new fractures
are being generated. Typically, in our simulations, the double-couple strengths are obtained
incrementally, i.e. we determine the additional double-couple strengths required to satisfy
the self-consistency conditions as the external boundary conditions and the internal fracture
pattern change; we can then compute the new stress and displacement in the system.

As an illustration of the self-consistent technique, consider the following calculation of
the build-up of the stress near a locked fault segment in an infinite seismic zone. The fault
line is the horizontal line at the middle of the system, and the stuck segment extends from
x = 0 to x = L − 1 (we takeL = 100). The top and bottom plates move relative to
each other, and the boundary condition is given byu(x, y = ∞) − u(x, y = −∞) = 1u
(1u is set to 1 in the calculation). When there is no stuck segment, the solution is simple
(u(x, y) = 0.5sign(y) and the system is stress free,σ(x, y) = 0). However, since the
fault segment is stuck, there will be a stress build-up in its vicinity. The extra stress can
be calculated by evaluating the extra double-couple strengths along the fault required to
enforce the condition of zero relative displacement along the stuck fault segment. Letf (x)

be the extra double-couple strength required at the position(x, 0) of the fault. We can then
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Figure 2. Comparison of the stress distributions. (a) Shows a stuck fault segment between 0
and 100 ignoring the region outside the zone. (b) Shows free stress boundary conditions are
employed on a fault segment of length 25 extending on either side aty = 0.

write down the stress and displacement of the system as

u(x, y) = 0.5 sign(y)+
∑
x ′
f (x ′)Gu(x − x ′, y)

σ (x, y) =
∑
x ′
f (x ′)Gσ (x − x ′, y).

(2.33)

The boundary condition on the stuck fault segment implies that

u(x, 1
2)− u(x,− 1

2) = 0 (2.34)

for x = 0 to L − 1. These conditions are used to determine the additional double-couple
strengths,f (x), self-consistently. Note that we should in principle solve for the additional
double-couple strengths along the entire fault (instead of just the stuck fault segment), but
this is not possible numerically. Instead, we first make the approximation of ignoring the
additional double-couple strengths outside the stuck fault segment; the above conditions on
the stuck fault segment are sufficient to determine the additional double-couple strengths
f (x) for x = 0 to x = L− 1, from which the additional stresses and displacements in the
system can be evaluated via equation (2.33). We have obtained an estimate of the effect of
the above approximation by including some additional double-couple strengths outside the
stuck segment and applying zero-stress boundary conditions on these segments; the results
are presented in figure 2. Figure 2(a) is the contour plot of the additional stress due to
the stuck fault segment at 06 x < 100; the calculation is done by ignoring the additional
double-couple strengths outside of the fault segment. Figure 2(b) shows the same stress
distribution, with the calculation done including some additional double-couple strengths
outside of the stuck fault segment. In this case, the self-consistent calculation is done for
the double-couple strengths on the extended segment−506 x < 150. As can be seen from
the figures, there are significant differences between the stress distributions near the edges
of the stuck segment, as we would expect. However, the overall stress pattern away from
the edges is similar.
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3. Numerical procedure for simulating quasistatic process of fractures

In this section we will present some new numerical techniques for the efficient simulation of
quasistatic models of fractures. Recall that in a typical model, we consider a discrete, elastic
medium with local stress thresholds; ruptures occur when the actual local stresses exceed the
corresponding thresholds. The system is driven, typically, by gradual changes in the external
boundary conditions, e.g. by increasing the external stress or the relative displacements at
the external boundaries. The driving of the system causes the stress to increase in the system
(the build-up is not necessarily uniform, as can be seen in the example studied in the last
section), resulting in ruptures in the system. The quasistatic process consists of periods in
which there are sequences of ruptures, separated by ‘rest periods’ when all the stresses are
below their corresponding thresholds. During the ‘rest period’, the stress is accumulating in
the system due to continual external driving. The external boundary conditions are held fixed
(a basic assumption of quasistatic models) during a sequence of ruptures. This corresponds
to the separation of time scales inherent in the system between the response time and the
much longer time scale characteristic of the external drive. This separation of time scales
is believed to be one of the distinguishing features of the phenomenon of self-organized
criticality that leads to scale-invariant behaviour [13].

We now discuss the calculation in greater detail. The stress distribution has to be
recalculated either because new ruptures occur causing stress redistribution in response
to it or because of the external driving; the new stress distribution determines if further
ruptures will be generated in the system. The case of the change in stress due to the
external drive is simple. Since the additional stress is linearly proportional to the external
driving, it is easy to calculate the additional driving required to generate a new rupture in
the system. Letσ old(r) be the distribution of stress immediately after the last sequence
of ruptures, and letσ ′(r) be the additional stress generated when the parameter,p, that
characterizes the drive (depending on the external boundary condition used,p can be the
external stress, the external displacement or the time spent in the accumulation process) is
increased by unit magnitude. The new stress when the parameter is increased by1p is
given byσ new(r) = σ old(r)+1pσ ′(r). It is easy from this formula to calculate the value
of 1p required to generate the first rupture in the next sequence of ruptures, by finding the
minimum1p required such that|σ new(r)| reaches the threshold at one site in the system.

After the first rupture, a new sequence of ruptures starts during whichp is assumed
fixed. The first rupture changes the stress distribution of the system; this in turn may cause
stresses in some locations to exceed the corresponding thresholds and new ruptures in these
locations will be generated. The new ruptures further change the stress distribution of the
system and may cause additional ruptures and so on. The process continues until all the
stresses are below their corresponding thresholds and the system then enters another ‘rest
period’. Both the stress change in the ‘rest period’ and the stress redistribution within the
sequence of ruptures are calculated using the self-consistent method discussed in the previous
section. A straightforward formulation of the problem leads to a calculation involving the
solution of a set of linear equations for the double-couple strengths directly at each step of
the simulation. The equation assumes the form∑

j

Aijfj = bi (3.1)

whereA is anN × N matrix with N being the number of double couples, and the matrix
elements ofA are the values of the appropriate Green functions. The vector,f , contains
the double-couple strengths, which we want to obtain from the equations. The vector,b,
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depends on the external boundary conditions and the boundary conditions imposed at the
ruptured sites. For example, leti0 denote the position of a newly ruptured site; let us impose
the boundary condition that the stress at the site is reduced to zero after the rupture, the
external boundary condition remaining unchanged. Then the matrix elementAi0j is given
by Gσ(ri0 − rj ) andbi0 is given by−σ old(ri0) (σ old(ri0) is the stress ati0 just before the
rupture) so that the new stress is fixed to zero. If, on the other hand,i0 is a site on a stuck
segment of the fault, thenAi0j will be related to the Green functions for the displacement:
Ai0j = Gu(ri0+ êy/2−rj )−Gu(ri0− êy/2−rj ) and the correspondingbi0 is zero (if there
are no changes in the external boundary conditions).

Since there are usually only a few new ruptures generated at each step of the simulation,
most of the matrix elements ofA remain unchanged. This fact can be used to construct a
more efficient numerical procedure for simulating the quasistatic process than the method
of directly solving the linear equation at each step. The idea is to keep a copy of the current
matrixB which is the inverse ofA. The matrixB is updated at each step, and the solution
for the double-couple strengths is obtained usingf = Bb. The number of operations
in the computation involved in updatingB, scales as theN2n, wheren is the number
of new ruptures. Ifn is much smaller thanN , as is usually the case, then this method
is much more efficient than the straightforward method of solving the linear equation
directly, which requires a computation of the order ofN3. The details are described in
appendix B. The numerical techniques described in appendix B for solving the consecutive
set of linear equations that arise in the simulation of the quasistatic fracture process, can also
be used in the simulation of quasistatic processes of other breakdown problems in which
the self-consistent procedure based on the Green function approach can also be used. In
the following section, however, this technique is used to study an earthquake model with a
pre-existing fault in the seismic zone.

4. A model of seismic zone with a pre-existing fault

Model studies of earthquakes have abounded in the last few years. It must be stressed
at the outset that the phenomenological information about seismic zones that has been
accumulated is extensive [12] but it is not feasible numerically to incorporate all the details.
The approach is to simplify the full three-dimensional elastodynamic equations that are well
accepted in different ways. In addition, the appropriate boundary conditions at the ruptures
and the time scale on which they should change, due to the presence of fluids, thermal
processes etc and the role of disorder, remain controversial and different approximations
have been adopted. The modelling by physicists has typically focused first on statistical
aspects. It is convenient to divide these models into two classes: quasistatic or dynamic.
The motivation for the former is roughly as follows. The dynamics during an earthquake
is complex and involves rupture propagation, seismic waves, stick–slip friction and energy
dissipation. However, the duration of an earthquake is much smaller than the time scale of
the stress build-up in the seismic zone. This feature has lead several researchers to consider
quasistatic models that ignore short-time dynamics and focus on the long-time statistical
behaviour of earthquakes. Over the past few years, such quasistatic versions of spring-block
models, originally suggested by Burridge and Knopoff [14] to study the stick–slip dynamics
at the faults, have been studied [15–21] in the context of ‘self organized criticality’ [22].
On the other hand, there have been several studies ofdynamicalmechanical fault models:
one class of models include frictional forces with features such as velocity weakening but
without disorder focusing on the fault in one dimension [24, 26] and in two dimensions
[25]; more recently, there has been an investigation of a slip-weakening mechanism [27].



Earthquakes in models of fractures in elastic media 2307

Models that include radiation damping have also been considered [28]. However, all these
models limit themselves to local, often near-neighbour, redistribution of the stress and often
consider only a single fault. All these studies, quasistatic and dynamic, being conceptually
simple, nicely demonstrate the emergence of scaling behaviour; in particular, they have
been shown to yield, typically numerically, the Gutenberg–Richter power law [23] for the
frequency-size distributions.

While some of the quasistatic stick–slip models capture several features of earthquakes,
most of them do not explicitly include long-ranged redistribution of the elastic stress
following a slip event [29]. An important study that does consider the evolution of a portion
of the San Andreas fault plane uses continuum Green functions and slowly varying boundary
conditions associated with the seismicity in other parts of the fault region [30]. Quasistatic
models that consider ‘dislocations’ instead of ‘cracks’ have also been investigated [16].

It is worth noting that the other standard numerical approaches to fracture processes are
difficult to implement in earthquake models. Molecular dynamics techniques are useful at
the microscopic level but are computationally too expensive to study a medium with many
cracks. The powerful and widely used finite element method, on the other hand, requires
elements much smaller than the cracks and the size of the heterogeneities. This renders the
finite element method difficult to use in the study of a heterogeneous medium with many
microcracks.

We discuss briefly the motivation behind our model whose origins are in the paper by
Chenet al [31]. The seismic zone typically contains faults with complex spatial patterns
and fractal geometry [32]. Tectonic loading of the seismic zone causes the plates on either
side of the fault to move in opposite directions; the consequent build-up of the stress
leads to an earthquake consisting of rupture processes that include stick–slip behaviour at
pre-existing fault structures and the formation of new cracks in the seismic zone possibly
creating new fault segments [12]. The study of the spatial characteristics of earthquakes,
therefore, requires a model for the entire seismic zone with embedded pre-existing fault
structures. Therefore, we have studied quasistatic models that include redistribution of the
long-ranged elastic stresses. However, they do not include dynamical phenomena. In our
previous paper [11], a simple model incorporating a pre-existing fault was proposed and
studied. The model, however, was implemented with the dipole representation of ruptures
for simplicity; this representation does not incorporate the full tensorial nature of the elastic
forces. We note that the requirement after a local shear rupture neither an additional force
nor an additional torque can be generated. This means that the rupture must be modelled by
a double-couple or quadrupolar force distribution [4]. In this section we present the double-
couple version of the model. Thus, computationally, the essential difference between the
current model and that of our previous paper lies in the use of the double-couple Green
functions. There is also a difference in the choice of the boundary conditions for ruptured
surfaces which will be discussed shortly. One of our conclusions is that the results for
the scaling of the distribution of earthquakes remain unaffected by the inclusion of double-
couple forces; within the limitations of our numerical calculations it is tempting to conjecture
universality of this class of models.

As in [11], we consider a two-dimensional model with a linear vertical strike–slip fault.
The basic ideas and methods presented here are not limited to this specific model and
can be generalized to study seismic zones with more complex fault geometries and zone
boundaries. The seismic zone is modelled using aLx × Ly lattice of blocksax × ay × az,
whereaz is the thickness of the crust; each block can be considered to have a characteristic
size of a few kilometers, andaz is assumed to be constant. Embedded in the middle of the
zone is a linear strike–slip fault along thex direction. The displacements are assumed to
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be small compared to the size of the block.
Tectonic loading of the seismic zone is represented by the driving of the plates on both

sides of the fault in opposing directions: the plate on one side of the fault (positivey) is
assumed to move to the right (positivex) with a speedv0/2 while the other plate moves
to the left with the same speed, leading to a relative velocityv0 for the plate motion. The
mechanism for earthquakes in the model is as follows. The blocks on one side of thefault
experience frictional forces due to the blocks on the other side, resulting in a zero relative
displacement at the fault, i.e. the fault surfaces are stuck while there is slow relative motion
of the tectonic plates during the quiescent periods between earthquakes. As was shown
in section 2, this causes stress to build up in the vicinity of the fault. Earthquakes are
then caused by faulting instabilities such asshear rupturesin the zone orslips at the fault
surfaces when the stress (or frictional force) exceeds the appropriate local threshold value.

In addition tov0, which sets the time scale for measuring the time interval between
successive earthquakes, we introduce three local parameters in our model. The stress
thresholds between adjacent blocks are distributed uniformly and randomly between a
maximum threshold,σu, and a minimum threshold,σl ; we also define an arrest stress,
σa, to sites that are ruptured; the three quantities obeyσu > σl > σa. The non-uniformities
in the thresholds can be viewed as a simple way of incorporating the spatial inhomogeneities
and the variations in the material properties of the seismic medium. One can easily introduce
spatial correlations in thresholds and model specific seismic zones for which information is
available.

An earthquake in our model is a sequence of ruptures in a quasistatic process described
in the previous section. The boundary conditions that were employed were as follows.
During the earthquake, which occurs on a rapid time scale, the plates are assumed to be
held fixed, i.e. there is no change in the external boundary conditions; the new shear stress
at the ruptured sites are set toσ new = σa during the remaining steps of the earthquake†;
the sites on the fault segment that have not ruptured during that particular earthquake
continue to remain stuck. These conditions cause stress redistribution and the earthquake
can proceed in several steps after the initiation. The stress distribution in the seismic zone
after each step is obtained self consistently using the procedure described in the previous
sections. The earthquake ends when the stress field reaches a state that is below the threshold
everywhere. After each earthquake, ruptures in the seismic zone are healed (i.e. no new
faults are generated in the zone; the healing time is assumed to be much smaller than the
time scale for stress build-up), while the surfaces along the fault are treated with stuck
boundary conditions again. In the numerical simulation, the matrixB is initialized, at the
end of each earthquake, to the inverse of the matrixA0 corresponding to the boundary
condition of a stuck fault segment at 06 x < Lx and no ruptures off the faults. The matrix
B is updated using the methods described in the previous section. This numerical procedure
is much faster than the one used in [11].

One can consider a variety of choices for the parametersσu,l,a. For simplicity, we
fix σa = 0.1 andσu = 1.0. The simulations are done for different values ofσl . After
each earthquake the stress threshold at the ruptured sites can either be reset to a new
value signifying a change in strength at the ruptured/slipped sites, or be fixed for the entire
evolution. The latter corresponds to quenched disorder and leads to a deterministic evolution
for the system. For the purpose of illustration, we mainly discuss the former case here and

† In the model of our previous paper [11], the previously ruptured surfaces become stuck in the remaining steps of
the earthquakes. This choice of the internal boundary condition causes unphysical rupturing of the whole system.
Nevertheless, fixing the stress at the ruptured site to the value of the arrest stress appears to be more physically
meaningful; the ruptured sites can keep slipping during the earthquake.
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report results for the quenched case.
To characterize earthquakes in our model, we use the same expressions for the energy

released(E) and seismic moment(M0) defined in [11]:E ≈ ∑
i [uxi ](σ

old(i) − σ new(i))

andM0 ≈ µ|
∑

i [uxi ]|, where the displacement discontinuity([ux ]) is the difference in the
displacement of blocks on either side of the rupture/slip,(σ old − σ new) is the stress drop
during the earthquake, and the sum is over all the surfaces that slip or rupture.

We first present the spatial features of earthquakes in our model. The global stick–
slip behaviour of the model is illustrated in the displacement fielduextra

x (x, y) during an
earthquake. Figure 3 shows this for a fixedx as a function ofy due to a large earthquake
that occurred at the fault. The slip at the fault displays a well known feature of large
earthquakes observed in surface faulting (see e.g. [33]). Moreover, the average slip rate at
the fault agrees with the relative plate velocity. We also find that most of the earthquakes
occur in the vicinity of the fault.

Figure 3. The displacement field (full circles), as a function ofy for a fixed x, due to a slip
(displacement discontinuity) at the fault(y = 0) in a large earthquake.

Next, we present statistical features of earthquakes in the evolution of the model by
using an 80× 50 system with 50 000 earthquakes after skipping the first 10 000 (so that
the system reaches a statistically stationary state [22]). In figure 4(a) we display log–
log plots of the distributionP(E) versusE for σl = 0.1001; the linear portion which
extends up toĒ corresponds to a power lawP(E) ≈ E−1−β with β = 0.7± 0.1. The
corresponding plot,P(M0), for the seismic moment distribution is shown in figure 4(b);
the exponent for the scaling is found to be roughly the same as in the energy distribution
P(E). We have also obtained the size distribution forσl = 0.4, 0.7, and 1.0. Similar scaling
behaviours are obtained except for the caseσl = 1.0 (all thresholds are equal, i.e. no spatial
inhomogeneities), where no scaling is found: the system appears to evolve to a periodic
state. This suggests that some spatial inhomogeneity is important for obtaining scaling in
this class of models. Nevertheless, the scaling appears not to depend on the degree of
spatial inhomogeneities in the model. In addition, we have also considered deterministic
evolution of the model (the thresholds are spatially inhomogeneous, but are fixed in the
entire simulation, i.e. the disorder is quenched), and we find thesamescaling behaviours.
The exponent obtained here is similar to that of model A in [11], and is consistent with the
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Figure 4. Log–log plot of the probability of earthquakes (for a sequence of 50 000 quakes on
an 80× 50 system) versus (a) the energy released,E, and (b) the seismic moment,M0. Both
correspond to power laws with an exponent 0.7± 0.1.

seismological data gathered over the past 100 years [34] as discussed in our earlier paper
[10].

In the calculation above, we have neglected the changes in the double-couple strengths
(on the fault) outside the stuck fault segment 06 x < Lx . To check the effect of this
approximation to the scaling law, we include some double-couple strengths beyond the
edges of the stuck segment in our calculation as was explained in section 2, and apply
the zero-stress condition on the additional fault segments. Specifically we monitored a
fault segment of length 80, where the middle segment of length 50 is treated as a stuck
segment with non-zero stress thresholds. We find the same scaling for the size distribution
of earthquakes.

In our model, earthquakes with energy greater thanĒ typically have ruptures extending,
from one side to the other, along the direction of the fault and hence can be viewed as
‘great earthquakes’. Though these events are less frequent, they release most of the energy
accumulated due to stress build-up. For real earthquakes, however, the size effects have not
yet been well established due to limited seismological data on great earthquakes. By using
typical numbers (e.g. for the San Andreas fault zone:v0 ≈ 3.5 cm/yr,µ = 30 GPa, fault
length≈ 400 km and crust thickness≈ 50 km), we find that the mean recurrence time of
great earthquakes in our model to be of the order of a few hundred years; this is consistent
with the recurrence times estimated using seismic moments observed in great earthquakes
[2].

We have also studied the distribution for time intervals between successive earthquakes.
To understand the size dependence of the temporal correlation, we introduce a lower cut-
off, El , in the earthquake energy. The time interval is defined for successive earthquakes
with energy larger thanEl (i.e. we ignore small earthquakes with energy less thanEl).
Figure 5 shows the distributions for various choices ofEl (σl = 0.1001 is used). For
El = 0 (where the statistics is dominated by small earthquakes) the distribution is found
to be closer to an exponential, suggesting a Poisson process for the occurrence of small
earthquakes; this can be ascribed to the absence of spatial correlations in the thresholds.
As El increases, a hump around the mean occurrence time for large earthquakes develops
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Figure 5. Distribution of time intervals between successive earthquakes with energy released
larger thanEl : (a) El = 0.0; (b) El = 2.0; (c) El = 50.0; (d) El = 100.0. Note the exponential
distribution in (a) and the pronounced hump in (d).

in the distribution, suggesting some temporal correlation for large earthquakes. The broad
distribution, however, still prevents the prediction of large earthquakes.

5. Conclusions

We have presented a systematic numerical procedure and new techniques for the simulation
of quasistatic processes of fractures, and other breakdown problems. The procedure has
been applied to a study of a model of a seismic zone with an embedded pre-existing fault
structure. We obtain the Gutenberg–Richter law for the model, which is consistent with the
seismological data. The scaling laws are found to be very robust; they are insensitive to
the degree of spatial inhomogeneities and to whether the model is deterministic or not. The
data for the time-interval distribution is consistent with a Poisson process for the occurrence
of small earthquakes, but temporal correlations are significant for large earthquakes.
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Appendix A. Evaluation of the Green functions

In this appendix we discuss how the evaluation of the two-dimensional integrals that occur
in the Green functions can be reduced to one-dimensional integrals that can then be handled
numerically. Recall that the Green function,Gσ(x, y), is given by

Gσ(x, y) =
∫ π

−π

dkx
2π

∫ π

−π

dky
2π

sin2 kx sin2 ky

(1− coskx cosky)2
eikxx+ikyy .

We only need the values of the Green functions for integer values ofx andy. For integral
x and y, we can first integrate overky by doing the complex integral obtained from the
change of variablez = eiky :

Gσ(x, y) =
∫ π

−π

dkx
2π

sin2 kxeikxx

[ ∮
C

dz

2π iz

[
1
2i (z − 1/z)

]2
zy(

1− 1
2 coskx(z + 1/z)

)2]. (A.1)

The integral in the square bracket can be evaluated as follows:

I1 = −
∮
C

dz

2π i

(z2− 1)2zy−1

(2z − coskxz2− coskx)2
. (A.2)

Let us consider the case thaty > 0. The poles of the integrand can be obtained by solving
the equation

2z − coskxz
2− coskx = 0.

There are two solutions: z1,2 = (1 ± | sinkx |)/ coskx ; only the root z1 = (1 −
| sinkx |)/ coskx = coskx/(1 + | sinkx |) lies inside the unit circle. The integral can be
written as

I1 = −
∮
C

dz

2π i

(z2− 1)2zy−1

cos2 kx(z − z1)2(z − z2)2
= − d

dz

[
(z2− 1)2zy−1

cos2 kx(z − z2)2

]
z=z1

or

I1 = − 1

cos2 kx

[
4(z2

1 − 1)zy1
(z1− z2)2

+ (y − 1)(z2
1 − 1)2zy−2

1

(z1− z2)2
− 2(z2

1 − 1)2zy−1
1

(z1− z2)3

]
.

Using the fact thatz1z2 = 1, we can further simplify the expression

I1 = 1

cos2 kx

[
2zy+2

1

1− z2
1

− (y − 1)zy1

]
= z

y

1

sin2 kx + | sinkx |
− (y − 1)

z
y−2
1

(1+ | sinkx |)2 . (A.3)

Now we have reduced the two-dimensional integral to a one-dimensional integral. For the
case thaty = 0, we can show, by adding the contribution from the polez = 0, that

I1 = 1

cos2 kx

[
2z2

1

1− z2
1

]
= 1

sin2 kx + | sinkx |
. (A.4)

Thus fory > 0 the Green function can be written as

Gσ(x, y) =
∫ π

0

dkx
π
| sinkx | coskxx

[
z
y

1

1+ | sinkx | − η(y)
| sinkx |yy−2

1

(1+ | sinkx |)2
]

(A.5)

whereη(y) = y − 1 if y > 1 andη(y) = 0 wheny = 0, 1.
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Appendix B. Details of the numerical matrix inversion scheme

We are interested in solving an equation of the form∑
j

Aijfj = bi (B.1)

whereA is anN × N matrix with N being the number of double couples, and the matrix
elements ofA are the values of the appropriate Green functions. The vector,f , contains
the double-couple strengths, which we want to obtain from the equations. The vector,b,
depends on the external boundary conditions and the boundary conditions imposed at the
ruptured sites as described in section 3. For example, leti0 denote the position of a newly
ruptured site; let us impose the boundary condition that the stress at the site is reduced
to zero after the rupture, the external boundary condition remaining unchanged. Then the
matrix elementAi0j is given byGσ(ri0−rj ) andbi0 is given by−σ old(ri0) (σ old(ri0) is the
stress ati0 just before the rupture) so that the new stress is fixed to zero. If, on the other
hand, i0 is a site on a stuck segment of the fault, thenAi0j will be related to the Green
functions for the displacement:Ai0j = Gu(ri0 + êy/2− rj )−Gu(ri0 − êy/2− rj ) and the
correspondingbi0 is zero (if there are no changes in the external boundary conditions).

The idea is to keep a copy of the current matrixB which is the inverse ofA. The matrix
B is updated at each step, and the solution for the double-couple strengths is obtained using
f = Bb. We consider here the updating ofB due to one new rupture (it can be generalized
easily to the case of many new ruptures). Typically there are two types of new ruptures: (a)
a completely new rupture at a previously elastic site and (b) a new rupture at a pre-existing
ruptured site (the boundary condition at the ruptured site is changed from being a stuck
ruptured interface to a slipping interface with a stress reduction). For case (a), the matrix
A can be partitioned as

A =
[
Aold A1

A2 A3

]
(B.2)

whereAold is the matrixA before the rupture,A1 is a column vector,A2 is a row vector,
andA3 is a scalar. Letri , i = 1, 2, . . . , N be the locations of previous ruptures (N is the
total number of ruptures before the current one) andrN+1 be the location of the current
rupture. ThenA1[i](i = 1, 2, . . . , N) are given by

A1[i] = Gσ(ri − rN+1)

if constant stress boundary condition is employed atri , and

A1[i] = Gu

(
ri − rN+1+ êy

2

)
−Gu

(
ri − rN+1− êy

2

)
if stuck boundary condition is employed atri . A2 andA3 are simply given by

A2[i] = Gσ(rN+1− ri ) i = 1, . . . , N andA3 = Gσ(0, 0).

The new matrixB, which is the inverse of the new matrixA, is given by the following
formulae [5]:

B = A−1 =
[
B0 B1

B2 B3

]
(B.3)

whereB3 = (A3−A2BoldA1)
−1, B0 = Bold+ (BoldA1)B3(A2Bold), B1 = −(BoldA1)B3, and

B2 = −B3(A2Bold). It is easy to see that, givenBold = A−1
old, one can obtain the new matrix

B with a calculation of order ofN2.
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For case (b), the size of the matrix is unaltered, but one row of the matrix has changed.
Let the index of the row whose elements are changed (corresponding to a previously ruptured
site rupturing again) bei0; then the new matrixA can be decomposed as

A = Aold+ u
⊗

v

whereu is a vector with unity at elementi0 and zero everywhere else,v is the vector
containing the difference between thei0th row of A andAold. For our case,

v[i] = Gσ(ri0 − ri )−
[
Gu

(
ri0 − ri +

êy

2

)
−Gu

(
ri0 − ri −

êy

2

)]
i = 1, . . . , N.

(B.4)

With A expressed in this form, we can use the Sherman–Morrison formulae [5] to obtain
the inverse ofA:

B = A−1 = Bold− (Boldu)⊗ (vBold)

1+ vBoldu
. (B.5)

It is easy to check that, givenBold = A−1
old, this also requires a calculation of orderN2 to

obtain the new matrixB.
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